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Abstract
The authors present a novel transcendental hysteresis model based on the piece-
wise definition of arctangent functions. The definition of the shape parame-
ters of the arctangent functions originates from the features of the experimental
hysteresis curves directly. In the first step, the authors present this model’s appli-
cation to the experimental cyclic response of cross-laminated timber (CLT), light-
timber frame (LTF) shear walls, and a steel angle bracket. Then, the response of
a plywood-coupled laminated-veneer lumber (LVL) shear wall is used for valida-
tion purposes. The paper introduces the arctangent-based model, labeled Atan
model, by illustrating some possible shortcomings of hysteresis models with
pinching. The paper concludes with a simple demonstration of these issues in
the case of a Bouc-Wen class hysteresis model, the extended energy-dependent
generalized Bouc-Wen (eegbw) model. The numerical instabilities of the eegbw
model are used to endorse the advantages of the proposed formulation in mod-
eling complex structural arrangements, like wood joints and structural systems.
The proposedmodel originates from the analysis of the experimental response of
wood joints. However, it can be of more general application, and the particular
reference to wood joints does not preclude other application fields.

KEYWORDS
cross-laminated timber, hysteresis models, light-timber frame, pinching, shear walls, timber
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1 INTRODUCTION

Many of the recent research efforts in structural dynamics and earthquake engineering focus on predicting the inelas-
tic response of real structures[1] or structural archetypes.[2–4] However, the analyses of rather elementary structures may
require significant computational efforts. Consequently, the nonlinear dynamic analyses of more complicated systems are
not feasible unless simplified methods are adopted.[5] Among them, the use of empirical hysteresis models can signifi-
cantly reduce the computational costs of nonlinear dynamic analysis.[6–9] Empirical hysteresis models aim at reproducing
the experimental response of the structural systemwithout concern on themechanics ofmaterials: themodel is empirical,
i.e., it blindly matches the experimental data.
Like timber ones, many structures descend from the assemblage of timber elements using steel connectors. The empir-

ical modeling of each connector using empirical hysteresis formulations rather than the finite element (FE) modeling of
the connector can significantly ease the numerical simulations of complicated structural arrangements. In the scientific
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literature, there are a variety of empirical hysteresis models, and many models attempt to reproduce the complex phe-
nomena of timber connections: pinching, strength degradation, and stiffness degradation.[10–12] The need to account for
these phenomena entails more complex mathematical formulations, like in Ref. [13]
There are two main categories of hysteresis models in structural engineering applications: differential and

nondifferential.[14] Differential models originate from Volterra’s pioneering studies at the beginning of the last century.
Still, the history of hysteresis (i.e., rate-independent memory) is relatively short: mathematical developments lag behind
those of physicists and engineers. It was only in 1966 that hysteresis was first given a functional approach by Bouc, who
introduced a differential hysteresis model,[15] later extended by Yi-Kwei Wen, Baber, and Noori.[16] The Bouc-Wen-Baber-
Noori BWBNmodel of hysteresis is one of the most used hysteretic models to describe nonlinear hysteretic systems. This
model can follow a wide range of hysteretic shapes. Foliente[17] modified the BWBN and applied the model to wood struc-
tures. Although the Bouc-Wen classmodels are themost used in structural engineering, the Bouc-Wen classmodels do not
encompass all possible differential models. The mathematicians introduced the notion of hysteresis operator,[18] which
aims to unify all mathematical formulations possibly valid for an ample variety of hysteresis phenomena. The scientific
literature is abundant of hysteresis models striving for generality and versatility[19]; However, most of the research in
structural engineering, chiefly directed on applications, does not deal with differential hysteresis models more evolved
than the Bouc-Wen class ones and focalizes on nondifferential formulations due to flaws and challenges in using these
models. The Bouc-Wen class model, for instance, suffers from some shortcomings and requires a consistent definition
of the parameters to obtain upper bounded results.[20] Additionally, the exact modeling of pinching, characterized by a
notable boost in stiffness, may cause several convergence problems.[21,22] Besides, the digital era’s ascension has lessened
the energies of structural engineers devoted to the study of analytical models and praised more elementary approaches
based on the use of piecewise functions.
Therefore, many scholars dedicated their research to algebraic or transcendental hysteresis models, which may have

some stability advantages to the differential ones: they are generally faster and less computationally demanding. Algebraic
hysteresis models refer to the formulations based on polynomial expressions, while transcendental ones originate from
transcendental functions. Algebraic and transcendental models are nondifferential models, compared to the well-known
Bouc-Wen, which is defined as a first ordinary differential equation (ODE).
In the field of timber engineering, a few scholars presented algebraic empirical hysteresis model, and most of them

descend from the piecewise definition of linear functions, like the models by Polensek and Laursen,[23] the trilinear
model by Rinaldin et al.,[24] and the SAWS Material Model (OpenSees).[25] Conversely, the Consortium of Universities
for Research in Earthquake Engineering (CUREE) model,[26] the evolutionary parameter hysteretic model (EPHM),[27]
and others[28,29] present nonlinear branches. Dolan[30,31] developed a transcendental hysteresismodel based on four expo-
nential functions that define the hysteretic curves. Differentialmodels are continuous since they descend from the solution
of a differential equation. Algebraic or transcendental models must achieve continuity by choosing the several curves that
compose the entire cycle. In contrast with the differential models, a specific concern must be given to fulfil the continu-
ity conditions, satisfied by all the models referenced above. Additionally, an essential aspect regards the convenience of
adopting hysteretic models defined by a single function rather than multilinear ones characterized by continuity condi-
tions, as remarked by Refs. [32–35]. Compared to other engineering fields, most of the research on timber engineering still
focalizes on the experimental testing of structural assemblies. The prediction of timber arrangements’ inelastic response
still requires a consistent validation with experimental tests, since FE analyses are time-consuming and affected by sig-
nificant uncertainties. The uncertainties mainly relate to the unknown interaction between timber and the connectors
and the actual force distribution inside the structure. In this paper, the authors discuss a novel transcendental hysteresis
model, possibly useful for modeling wooden joints or structural systems tout court. The first sections qualitatively discuss
the numerical issues associated with empirical hysteresis model with pinching. Then, the following sections present the
model and its application to a class of structural systems. The last section addresses the issue of numerical stability by
referring to a Bouc-Wen class model.

2 STABILITY ISSUES OF HYSTERESIS MODELSWITH PINCHING

The current research stems from the solution of the numerical instabilities related to a drastic change in stiffness. The
authors strived for an elementary and versatile solution based on the use of the arctangent function. Still, this function’s
choice is arbitrary, and its use does not guarantee a good agreement with any possible hysteresis curve. The optimum
parameters of the selected function do not always ensure sufficient flexibility. The proposed method is not different from
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F IGURE 1 Illustration of the modeling issues behind hysteresis models with pinching; 𝑥 is the displacement, �̇� the velocity, 𝑑𝑢 the
ultimate displacement, 𝑞 the pinching fraction, 𝑑𝑡 the time step

other ways of defining hysteresis loops using different functions. Besides, the solution of additional numerical issues, like
the accumulation of error over multiple time-steps, is not the object of this research, which converges on a specific prob-
lem often encountered in pinched models. The following paragraphs present a qualitative introduction to the numerical
instability problems recurrent in pinched models due to the drastic change in stiffness. The modeling of hysteresis phe-
nomena characterized by pinching effects requires two definitions of the loading paths. The first loading has an initial
higher stiffness while approaching an upper force bound with a lower inclination. The reloading has lower stiffness due
to the occurred plasticization. However, while reloading, the stiffness boosts before attaining a fraction (𝑞) of the maxi-
mum displacement of the first loading (𝑑𝑢). The stiffness value rises rapidly, almost instantaneously, due to the occurring
of pinching. After the almost abrupt growth, the curve reconnects to the first loading path, see Figure 1(A). The two
curves, needed to replicate the first loading and pinched paths, have opposite curvatures. The former resembles a con-
cave function, the latter a convex one. The former is more stable and tends to a nearly horizontal asymptote, depending
on hardening phenomena. The latter boosts and has an almost vertical asymptote, even before the attaining of the ulti-
mate displacement. Figure 1 illustrates the concept by extrapolating the curves with the dotted line. Accurate modeling
demands the selection of two functions with the same curvatures as the curves to be replicated. The authors challenged in
accurately modeling complex hysteresis phenomena and attempted to extend the generalized Bouc-Wen model to pinch-
ing and degradation.[13] However, they realized that the model is very stable in pseudo-static simulations, but suffers
instability issues when dealing with dynamics. The instability is prevented by reducing the integration step significantly.
Still, the considerable lowering of the integration step makes the simulation very time consuming. To the authors’ knowl-
edge, similar instability issues are indeed the flaw of all empirical hysteresis models with pinching. The substantive reason
behind numerical instability and difficulties in numerical convergence is elementary. The authors attempted to explain
in Figures 1(A) and 1(B). The points 𝑃1, 𝑃2, and 𝑃3 represent three possible time-instants of a dynamic simulation. When
dealing with pseudo-static simulations, prevalent in structural engineering, the velocity (�̇�) is constant and shallow. Con-
sequently, the displacement step (𝑑𝑥) can be tiny, even with looser time steps (𝑑𝑡), being 𝑑𝑥 = �̇�𝑑𝑡. The time-discrete
equation that describes the displacement at a certain time step is:

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + �̇�(𝑡𝑘)𝑑𝑡, (1)

�̇�(𝑡𝑘) = constant, (2)

where 𝑡𝑘 is the k-th time step. Accurately, the primary reason beneath instability is the definition of the transition between
the first loading and the pinched paths inside a for-loop, conventionally based on a conditional statement.
If {𝑥(𝑡𝑘) > 𝑞 ⋅ 𝑑𝑢 |𝑑𝑢 = max(𝑥(𝑡𝑘))∀𝑡𝑘|𝑘 ∈ [0, 𝑘)} Then
𝑥(𝑡𝑘) = First loading
Else
𝑥(𝑡𝑘) = Re-loading
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If the displacement 𝑥(𝑡𝑘) at the time 𝑡𝑘, attained during the entire time history up to 𝑡𝑘, is higher than 𝑞 ⋅ 𝑑𝑢, the
algorithm selects the first loading curve in the successive time step. Otherwise, the following point remains in the pinched
curve. In pseudo-static simulations the displacement step can be tiny without significant extension of the computation
time: the threshold 𝑞 ⋅ 𝑑𝑢 passes very close to the intersection point between the first-loading and the reloading curve.
Hence, the conditional statement sharply defines the transition between the two functions.
Conversely, in dynamic simulations, like seismic excitation, the velocity is unknown and descends from the dynamic

equilibrium equation. The time-discrete dynamic equilibrium equations of a single-degree-of-freedom (SDOF) oscillator
subjected to a base seismic excitation can be written as:

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + �̇�(𝑡𝑘)𝑑𝑡, (3)

�̇�(𝑡𝑘+1) = �̇�(𝑡𝑘) − [2𝜉𝜔�̇�(𝑡𝑘) − 𝜔2𝑥(𝑡𝑘) − 𝑎𝑔(𝑡𝑘)], (4)

where 𝜉 is the viscous damping, 𝜔 the natural pulsation, and 𝑎𝑔(𝑡) the seismic base excitation. When the velocity is con-
sistently high, the displacement step may be higher than expected, even if the time step is tiny. If so, the definition of
the conditional threshold 𝑑𝑢 is not very sharp, and may fall beyond the intersection point between the first-loading and
reloading curves. Consequently, the algorithm selects point 𝑃2 after 𝑃1, rather than 𝑃3. Therefore, convergence would be
compromised. The point 𝑃1 may jump to point 𝑃2 in a single time step, directly. However, the pinched path can be so
perpendicular, that the point may fall far beyond the definition of the hysteresis model, approaching infinity. When the
point of integration befalls in that region, the simulation is very unlikely to converge and lacks any physical meaning,
since the hysteresis model maybe not defined in that region. In conclusion, some numerical instabilities descend from
the combination of two effects: (i) the velocity increases the displacement step and (ii) the significant inclination of the
pinched paths. (i) The former determines the inaccurate definition of themaximum displacement reached in the previous
cycles, which should be very close to the intersection point between the first-loading and reloading curves to achieve a
smooth transition. (ii) The latter compromises the numerical stability since the erroneously selected point would exceed
the definition of the hysteresis model.

2.1 Enhancing numerical stability of pinched model

There are two alternatives to enhance the numerical stability of hysteresis models with pinching: (i) sharpening the def-
inition of the shifting threshold (𝑑𝑢) or (ii) selecting upper bounded functions to replicate pinched paths. (i) A refined
definition of 𝑑𝑢 requires a direct control on the amplitude of the displacement step, 𝑑𝑥, which must remain below a spe-
cific value (𝑑�̂�). If 𝑑𝑥 exceeds that value, the algorithm should initiate a while loop, which reduces the amplitude of the
time step until the condition’s fulfilment. However, implementing this additional task to an advanced model may arise
some concerns about the actual advantages of using convex functions to match pinched loading curves. Additionally,
the convergence of the while loop would entail an inexorable increase in the computational costs. (ii) On the contrary,
selecting alternative concave functions to match pinched paths, characterized by opposite curvature, determines an over-
estimation of the dissipated energy in the range [0 − 𝑞 ⋅ 𝑑𝑢]. The sensitivity of dynamic simulations to accuratemodeling of
pinching is the discrimination between the two options above. Does the neglection of pinching determine biases in numer-
ical simulations significant for engineering purposes? Besides, in possible hysteresis models defined by upper bounded
functions, the extra-energy caused by concave functions may be compensated by a mindful calibration of the other mod-
eling parameters. In this paper, the authors examine the second option by comparing two hysteresis models. First, they
present the definition of alternative transcendental hysteresis models based on upper bounded trigonometric functions.
The authors then challenge these models in seizing the hysteresis response of assorted experimental data, correspond-
ing to a variety of structural systems. The last sections bestow the testing of two models, the extended energy-dependent
generalized Bouc-Wen (eegbw)model and the current one. The twomodelsmatch the outcomes of pseudo-dynamic exper-
imental tests. Next, the authors discuss the results and analyze their stability by varying the integration velocity within a
specific range.
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F IGURE 2 Examples of the cyclic responses of LTF (A) and (B) and CLT panels (C) and (D) carried out in the laboratories of the
University in Trento, Italy. Grossi et al. provide full detail of the experimental setup in Ref. [36]. (E) and (F) Pull out tests of angle brackets
carried out in the laboratories of the Northern Columbia University

3 ALTERNATIVEMODELING OFWOOD-JOINTS AND STRUCTURAL SYSTEMS

Next to the numerical issues behind the accurate modeling of pinching using convex functions, another evidence may
benefit a mindful formulation of a class of hysteresis models.
Specifically, many structural systems, like light-timber frame (LTF), cross-laminated timber (CLT), exhibit a significant

stiffness reduction in the unloading phases when attaining lower displacement values after an initial force drop. Conse-
quently, the hysteresis curves mostly evolve in the first and third quadrants of the Cartesian plane: the curves marginally
traverses the second and the fourth quadrants. Figure 2 show the cyclic load tests on LTF and CLT shear walls: the curves
almost intersect the axes’ origin during the unloading phases. After an initial force drop, the unloading curves have a
shallow slope, which allows going back to lower deformations almost without crossing the second and fourth quadrants.
The scholar can adequately select the unloading functions depending on the class of hysteresis phenomena to reproduce.
Precisely, he can base the ones considered in this paper, distinguished by a reduced energy dissipation due to pinching,
on the use of inverse trigonometric functions, like the arctangent. Arctangent is upper bounded:

arctan ∶ ℝ →
(
−
𝜋

2
,
𝜋

2

)
(5)

and its first derivative approaches zero very rapidly. Consequently, the arctangent meets the requirement explained at
the beginning of the section: the unloading curves have a reduced slope, which yields a significant reduction of the dis-
placement with a small force excursion. Besides, algebraic and transcendental models have numerous advantages: the
scholar does not need to solve differential equations. The drawback is the need to define continuity conditions between
the selected algebraic or transcendental functions. In the considered structural systems, the transition between the load-
ing and unloading curve is steep: there is almost a drop in the force value, see Figure 2. This nonsmooth transition
could be obtained without continuity conditions or additional functions. The lack of continuity conditions in the math-
ematical formulation likely expresses the contact reduction between timber and connector from loading to unloading.
The next section presents the formulation of an arctangent-based transcendental hysteresis model without continuity
conditions.
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F IGURE 3 (A) Partition of a hysteresis cycle into six parts, identified by the sign of the displacement and velocity, and the occurring of
pinching. (B) Mechanical parameters defining the features of a part of the cycle

3.1 Model formulation

The authors point at reproducing a class of hysteresis phenomena identified by the following properties, using the arct-
angent function: pinching, significant stiffness reduction in the unloading phases, asymmetry of the hysteresis, strength
degradation, and stiffness degradation. A hysteresismodel based on the arctangent functionmay have the following piece-
wise definition:

1 𝑎1 arctan(𝑏1𝑥 − |𝑐1|) if {�̇� > 0, 𝑥 > 0, |𝑥| > 𝑞max(|𝑥(𝑡)|)∀𝑡 ∈ [0, 𝑡)}

2 𝑎2 arctan(𝑏2𝑥 − |𝑐2|) if {�̇� < 0, 𝑥 > 0}

3 𝑎3 arctan(𝑏3𝑥 + |𝑐3|) if {�̇� < 0, 𝑥 < 0}

4 𝑎4 arctan(𝑏4𝑥 − |𝑐4|) if {�̇� > 0, 𝑥 > 0, |𝑥| < 𝑞max(|𝑥(𝑡)|)∀𝑡 ∈ [0, 𝑡)}

5 𝑎5 arctan(𝑏5𝑥 + |𝑐5|) if {�̇� > 0, 𝑥 < 0, |𝑥| ≤ 𝑞max(|𝑥(𝑡)|)∀𝑡 ∈ [0, 𝑡)}

6 𝑎6 arctan(𝑏6𝑥 + |𝑐6|) if {�̇� > 0, 𝑥 < 0, |𝑥| ≤ 𝑞max(|𝑥(𝑡)|)∀𝑡 ∈ [0, 𝑡)}

, (6)

where the six conditional statements identify the transition between the different parts of the hysteresis. A set of three
parameters define the arctangent function in each section of the loop: 𝑎𝑖 characterize the amplitude of the force, 𝑏𝑖 the x
axis resolution, and 𝑐𝑖 the residual displacement. The subscript 𝑖 varies between 1 and 6. The three parameters originate
from the shape features of the associated section of the cycle. To enhance the clarity of the presentation, Figure 3(B) depicts
the generic function in the first quadrant of the Cartesian plane. The main features of the 𝑖-th function are: the tangent
stiffness (𝑘0,𝑖), the secant stiffness (𝑘𝑠,𝑖), the yielding force (𝐹𝑢,𝑖), the displacement corresponding to the yielding force
(𝑑𝑢,𝑖), and the residual displacement 𝛿𝑖 .
The definition of the parameters are: 𝑎𝑖 =

2𝐹𝑢,𝑖

𝜋
, 𝑏𝑖 =

𝑘0

𝑎𝑖
, 𝑐𝑖 = |𝛿𝑖|. Exactly, 𝑎𝑖 descends by equaling the horizontal asymp-

tote to the maximum force, 𝑏𝑖 by equaling the first derivative to the initial stiffness, while 𝑐𝑖 has a direct correspondence
with 𝛿𝑖 .
Additionally, the strength and stiffness degradation candescend from theuse of an exponential function, like inRefs. [13,

17]. The exponential function expresses the force and stiffness degradation as a function of the dissipated hysteretic energy
(𝜖). The energy-dependent definition of 𝑎𝑖 and 𝑏𝑖 is: 𝑎𝑖(𝜖) = 𝑒(−𝜉𝑎𝑖 𝜖)

2𝐹𝑢,𝑖

𝜋
, 𝑏𝑖(𝜖) = 𝑒(−𝜉𝑏𝑖 𝜖)

𝑘0

𝑎𝑖
, where 𝜉𝑎𝑖 and 𝜉𝑏𝑖 are properly

calibrated to the degradation of the strength and stiffness, respectively. The 𝑎𝑖 , 𝑏𝑖 , and 𝑐𝑖 parameters descend directly
from the experimental curve. Empirical hysteresis models, like the current one, always imitate experimental data. There-
fore, the definition of the tangent stiffness, yielding force and yielding displacement from the experimental curve delivers
the values of the parameters without the compelling need for the optimization algorithm. The authors cannot give the
expected ranges of the parameters, since they are a function of the possible values of the tangent stiffness, yielding force
and yielding displacement, which depend on the experimental curve. Conversely, the parameters of the exponential shape
function, used to mirror the degrading behavior, may derive from a classical least-squares optimization[37] on the back-
bone curves, as carried out in the presented case studies. The most notable observation about this model is the ignoring of
the continuity conditions. The crucial drawback of an algebraic or transcendental model, compared to a differential one,
is the need to define continuity conditions between the loading and unloading curves. In this model, the absence of the
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F IGURE 4 Comparison between the experimental cyclic response of an LTF shear wall and the stationary model; Exp. stands for
experimental data, while Sim. for simulated data

continuity conditions descends from the observation of experimental data, see Figure 2. There is an almost vertical drop
in force at the beginning of the unloading phase. The following sections will prove that the neglection of the continuity
conditions between the loading and unloading curves may not cause a sensible error for engineering purposes. Conven-
tional piecewise hysteresis models are continuous: each branch ends where the other begins, see the CUREE model.[27]
Precisely, the coordinates of the ending point coincide with the coordinates of the beginning point. The suggestedmodel is
different and does not have continuity conditions in the unloading branches. In some structural systems, as occurs in tim-
ber connections, the unloading curve is significantly steep at the very beginning of the unloading phase, then the stiffness
reduces, and it is minimal. This phenomenon descends from a shred of clear physical evidence: in timber joints, the steel
connector loses contact with timber during the unloading phases causing the force to reduce drastically. Themodeling of a
nonlinear branch featured by a very high stiffness in the first instants of the unloading and an almost flat branch when the
displacement reduces could be the source of several instability issues, as explained in the previous section. Therefore, the
authors proposed an unloading branch characterized by a force discontinuity. The loading branch does end with the same
displacement, which characterizes the unloading one. However, the loading curve’s ultimate force value does not coincide
with the initial force of the unloading: the unloading curve manifests a blunt force drop, which mirrors the physical loss
of discontinuity between the steel connector and the adjacent timber.

4 APPLICATION OF THE PROPOSEDMODEL TO EXPERIMENTAL DATA

The paper presents an application of the model, named hereafter “Atan” model, to the experimental cyclic responses of
LTF and CLT shear walls, and a steel angle bracket. The reader can find enough details of the experimental setup of CLT
and LTF in Grossi et al.[36] The three experimental cyclic responses manifest a distinct progression of the strength and
stiffness degradation: the authors examine the model capability in matching more complex hysteresis responses.

4.1 Application to LTF shear walls

The experimental cyclic response, reported in Figure 2(A), manifests a smooth strength and stiffness degradation. There-
fore, the exponential function is adequate to simulate such evolution. A stationary model, like the one in Figure 4, can
be a compromise solution in the perspective of a direct simulation. In this paper, the term stationary identifies the inde-
pendence of the model parameters on degradation phenomena or evolutionary behaviors. The model seizes the cyclic
response, although it does not follow the exact curvature of the experimental data, due to the limits in using the arctan-
gent function. Accurately, the loading curve follows the backbone curves, but it does not agree with the pinched paths,
which have curvature opposite to the backbones and the arctangent function. Conversely, the unloading paths are adher-
ent to the experimental data and, after the initial force drop, they exhibit the same slope. The observation of the plots
reveals that the stationary model exhibits poor agreement, compared to other existing formulations,[24,38,39] due to the
lack of degradation-dependent terms. Figure 4 shows that the crude nonstationary model should include degradation-
dependent terms to achieve a good correspondence between the experimental and simulated data. The performance of



2284 ALOISIO et al.

TABLE 1 Parameters of the hysteresis models depicted in Figures 4 and 5, labeled as stationary and degradation dependent, respectively

LTF
Parameters Stationary Degradation dependent
𝑎𝑖={1−6} 38.217 44.586
𝑏1,4 0.236 0.202
𝑏2,3 0.008 0.022
𝑏5,6 0.131 0.112
𝑐𝑖={2−3} 0.300 0.300
𝑐𝑖={1,4−6} 0.200 0.200
𝜉𝑎,𝑏 0.000 8.000E-05

TABLE 2 The ultimate value of the simulated (𝐹𝑢,𝑠) and experimental forces (𝐹𝑢,𝑒), root mean square error (rmse), maximum error (me).
and the relative maximum error to 𝐹𝑢 (rme) corresponding to the models in Figures 4 and 5. The error is the difference between the
experimental and simulated force vectors

LTF
Error Stationary Degradation-dependent
𝐹𝑢,𝑠 (kN) 58.06 65.74
𝐹𝑢,𝑒 (kN) 71.00 71.00
rmse (kN) 22.11 11.61
me (kN) 12.94 5.26
rme (%) 18.22 7.40

the LTF panel is not stationary, but it exhibits a manifest dependence on stiffness and strength degradation: the resistance
reduces, the stiffness diminishes, and it isminimal at the end of the cycle. Therefore, the stationarymodel is an in-between
step toward a more advanced empirical hysteresis model discussed in the following paragraphs. Tables1 and 2 present the
values of the parameters and the corresponding error with the experimental data. The maximum error is notable due to
the use of a stationary model: the strength reduces, but the model remains stationary.
The adoption of a strength and stiffness degradation function, like the exponential, improves the similarity between the

hysteresis model and the experimental data significantly. Figure 5 depicts the results of a simulation obtained by using
the parameters in Table 1. Even though the curvatures of the simulated and experimental data do not exhibit an exact
matching, the comparison yields promising outcomes. The model follows the evolution of the degradation phenomena
and grasps the peak force values attained by the LTF shear wall.

F IGURE 5 Comparison between the experimental cyclic response of an LTF shear wall and the degradation-dependent model; Exp.
stands for experimental data, while Sim. for simulated data



ALOISIO et al. 2285

F IGURE 6 Comparison between the experimental cyclic response of a CLT shear wall and the stationary model; Exp. stands for
experimental data, while Sim. for simulated data

F IGURE 7 Comparison between the experimental cyclic response of a CLT shear wall and the degradation-dependent model; Exp.
stands for experimental data, while Sim. for simulated data

4.2 Application to CLT shear walls

The CLT shear walls exhibit a different cyclic response, characterized by an abrupt decrement in strength and stiffness
to the failure of the hold-downs. The exponential decrement cannot replicate the sudden decrement of the force and the
stiffness. The authors compared the experimental response of theCLT shearmodel to threemodels. The first is a stationary
model characterized by constant values of the parameters. The second model has degradation-dependent parameters
based on the use of an exponential function. The thirdmodel seeks an ad hoc piecewise function to reproduce the step-like
decrement. Figure 6 presents the comparison with the stationary model in terms of hysteresis curve, force–time function,
and energy–time function. The model hugely overestimates the force and energy values. Figure 7 displays the proposed
model shaped by the exponential decrement function. The results improve, but the analytical model still exceeds the force
and the dissipated energy. Figure 7(B) shows the force drop and the need in using an appropriate shape function. Still, the
matching in Figures 6 and 7 is still inadequate, and a more elaborate model is needed. The authors adopted the following
piecewise function to enhance the agreement between the analytical and experimental results. The drop corresponds to
the dissipated energy associated with the strength fall.

1 if 𝜖 < 1800 kJ
0.003 + 𝑒−0.001𝜖 if 𝜖 > 1800 kJ. (7)

Figure 8 shows the outcomes of the third model, obtained by using the step-like function in Equation (7). The correspon-
dence increases, as confirmed by Table 4. Table 3 summarizes the parameters used to obtain the three hysteresis models
illustrated in Figures 6, 7, and 8.
In conclusion, the adoption of a peculiar shape function can enhance the agreement between the experimental and

simulated data significantly. The fact that the model crosses the origin of the axes and the lack of continuity conditions
do not represent an hindrance to a satisfying matching.
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F IGURE 8 Comparison between the experimental cyclic response of a CLT shear wall and the degradation-dependent proposed model
using a piecewise function for degradation; Exp. stands for experimental data, while Sim. for simulated data

TABLE 3 Parameters of the hysteresis models depicted in Figures 6, 7, and 8, labeled as stationary and degradation-dependent and
degradation-dependent with exponential step, respectively

CLT

Parameters Stationary
Degradation-dependent
exp

Degradation-dependent
exp step

𝑎𝑖={1−6} 39.220 50.950 50.950
𝑏1,4 0.236 0.137 0.137
𝑏2,3 0.008 0.0196 0.0196
𝑏5,6 0.131 0.098 0.098
𝑐𝑖={2−3} 0.100 0.100 0.100
𝑐𝑖={1,4−6} 0.100 0.100 0.100
𝜉𝑎,𝑏 0.000 8.000E-05 Equation (7)

4.3 Application to the pull-out of an angle bracket

The cyclic response of a steel angle bracket presents similar features to those manifested in the CLT and LTF shear walls.
The performance of theAtanmodel is compared to the results of an FE simulation carried out inAbaqus. The investigation
of a single connector, rather than an entire structural assembly, reduces the computational costs of a refined FE model
in Figure 9 and encourages the implementation. Still, the analysis of a single connector entails notable computational
efforts. Table 5 details the parameters of the Atan model used in the analysis. Figure 10 illustrates the cyclic response
of the angle bracket in terms of hysteresis curve, force–time, and energy–time functions. Notwithstanding the notable
simplifications, the Atan model with exponential decay exhibits a satisfying agreement with the experimental data. The
angle bracket presents plasticization after a certain displacement level, yielding the arisen of opposing restoring forces.

TABLE 4 The ultimate value of the simulated (𝐹𝑢,𝑠) and experimental forces (𝐹𝑢,𝑒), root mean square error (rmse), maximum error (me),
and the relative maximum error to 𝐹𝑢 (rme) corresponding to the models in Figures 6, 7, and 8. The error is the difference between the
experimental and simulated force vectors

CLT

Error Stationary Degradation-dependent
Degradation-dependent
exp step

𝐹𝑢,𝑠 (kN) 58.36 70.31 75.61
𝐹𝑢,𝑒 (kN) 81.32 81.32 81.32
rmse (kN) 67.15 59.030 26.2
me (kN) 22.96 11.01 5.71
rme (%) 29.06 13.94 7.23
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F IGURE 9 (A) Load protocol of the pull-out test, (B) FE model of the angle bracket

TABLE 5 Parameters of the hysteresis model in Figure 10; the ultimate value of the simulated (𝐹𝑢,𝑠) and experimental forces (𝐹𝑢,𝑒), root
mean square error (rmse), maximum error (me), and the relative maximum error to 𝐹𝑢 (rme) corresponding to the models in Figures 9 and
10. The error is the difference between the experimental and simulated force vectors

Angle bracket
Parameters Degradation-dependent exp Error Degradation-dependent exp Abaqus
𝑎𝑖={1,6} 50.012 𝐹𝑢,𝑠 (kN) 41.39 40.46
𝑏1,4 0.376 𝐹𝑢,𝑒 (kN) 40.39 40.39
𝑏2,3 0.376 rmse (kN) 31.220 33.310
𝑏5,6 0.031 me (kN) −1.00 −0.07
𝑐𝑖={1,6} 0.000 rme (%) −2.48 −0.17
𝜉𝑎 0.080
𝜉𝑏 0.010

The negative forces are a small fraction of the positive ones. Both the Atan and the Abaqusmodel mirror the experimental
data. However, the Atan model exhibits better accordance with them, as assessed in Table 5.

5 VALIDATIONWITH PSEUDO-DYNAMIC EXPERIMENTAL TESTS

This section deals with model validation. First, the authors calibrate the model on the experimental cyclic response of a
given structural system. Then, the response of the already calibrated analytical model is compared to the experimental
response of the same structural system excited by a different input. Precisely, the authors used the experimental cyclic
response of plywood-coupled laminated-veneer lumber (LVL) wall panels, detailed in Ref. [40]. Iqbal et al. investigated
the response of the same plywood-coupled LVLwall to pseudo-static and pseudo-dynamic loading and provides the details
of the earthquake record used for the pseudo-dynamic test. Figure 11 shows the excellent agreement in terms of hysteresis

F IGURE 10 Experimental cyclic response on a plywood coupled LVL wall: (A) sketch and (B) front view of the panel
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F IGURE 11 Comparison between the experimental cyclic response of a prestressed plywood-coupled LVL shear wall and the
energy-dependent proposed model using a piecewise function for degradation; Exp. stands for experimental data, while Sim. for simulated
data. Iqbal et al. provide full detail of the experimental setup in Ref. [40]

TABLE 6 Parameters of the hysteresis model in Figure 11

PRESS LVL
Parameters Degradation-dependent exp
𝑎𝑖={1,6} 70.060
𝑏1,4 0.114
𝑏2,3 0.099
𝑏5,6 0.099
𝑐𝑖={1,6} 0.000
𝜉𝑎,𝑏 7.000E-05

curve, force–time, and energy–time functions between the experimental tests and the proposed model with the param-
eters in Table 6. The comparison is satisfying, as notable from Table 7, possibly due to the reduced dissipative capacity
of the structural system. Still, it manifests pinching and both strength and stiffness degradation as in most of the wood-
based systems.
Figure 12 bestows the response of the real structural and the analyticalmodel to pseudo-dynamic loading. The analytical

model has been already calibrated, and the comparison between the two responses is a validation of themodel: the scholar
can theoretically use the model to extrapolate information using different inputs or, more generally, different structural
configurations. Table 7 proves that the error associated with the pseudo-dynamic tests is not much higher than the one
associated with the pseudo-static test. The model satisfactorily reproduces experimental data from cyclic tests, Figure 12.
Consequently, experimental data could be considered adequately fitted for engineering purposes. In particular, the two
responses are nearly coinciding in the central part of the graph, as evidenced in Figure 12(B).

TABLE 7 The ultimate value of the simulated (𝐹𝑢,𝑠) and experimental forces (𝐹𝑢,𝑒), root mean square error (rmse), maximum error (me),
and relative maximum error to 𝐹𝑢 (rmse) corresponding to the models in Figures 11 and 12. The error is the difference between the
experimental and simulated force vectors

PRESS LVL-atan model PRESS LVL-eegbwmodel
Error Pseudo-static Pseudo-dynamic Pseudo-static Pseudo-dynamic
𝐹𝑢,𝑠 (kN) 101.23 98.29 103.20 98.85
𝐹𝑢,𝑒 (kN) 106.50 96.01 106.50 96.01
rmse (kN) 13.85 23.31 13.85 33.31
me (kN) 5.27 −2.28 3.30 −2.84
rme (%) 4.95% −2.37% 3.10% −2.96%
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F IGURE 1 2 Comparison between the response of a prestressed plywood-coupled LVL shear wall and the degradation-dependent
proposed model under pseudo-dynamic tests; Exp. stands for experimental data, while Sim. for simulated data

F IGURE 13 Comparison between the cyclic response of a prestressed plywood-coupled LVL shear wall and the extended
energy-dependent generalized Bouc-Wen model under pseudo-static tests; Exp. stands for experimental data, while Sim. for simulated data

6 COMPARISONWITH THE EXTENSION OF THE GENERALIZED BOUC-WEN
MODEL: THE ISSUE OF NUMERICAL STABILITY

The authorswould enrich the presentation by comparing the performance of a Bouc-Wen classmodel, the eegbwmodel[13]
to the Atan model introduced in this paper. The Bouc-Wen class models are the most used differential models in struc-
tural dynamics. Accordingly, the authors compare the performance of the Atanmodel to a specific Bouc-Wen class model,
the eegbw model, formulated for the simulation of the behavior of timber connections. The eegbw model can reproduce
asymmetry, pinching, and degradation-dependent phenomena, compared to the enhancement of the Bouc-Wenmodel by
Foliente,[17] which cannot reproduce asymmetrical responses. The versatility of the eegbw model in mirroring complex
hysteretic behaviors supported its use for comparison purposes. The eegbwparameters associatedwith the optimumaccor-
dancewith the experimental data are: 𝑘0 = 7000,𝛼 = 0.12,𝛽1 = 1.66 + 0.002𝜖,𝛽2 = −1.63 − 0.0003𝜖,𝛽3 = 2.07 + 0.0003𝜖,
𝛽4 = −0.012 − 0.0004𝜖, 𝛽5 = 0.18 + 0.0001𝜖, 𝛽6 = −0.19 + 0.0002𝜖, 𝛽7 = 0, 𝛽8 = 0, 𝑞 = 0.9. The calibration of the eegbw
parameters is shown in Ref. [13]. The Bouc-Wen class models are described by a first-order ODE:

�̇� = �̇�[𝐴 − |𝑧|𝑛𝜓(𝑧, �̇�, 𝑥)], (8)

where 𝑧 is the inelastic variable, 𝑥 the displacement, 𝐴 and 𝑛 constants, 𝜓(𝑧, �̇�, 𝑥) a shape function. The definition of the
adopted shape function is detailed in Ref. [13]. The total resisting force 𝑓 is:

𝑓(𝑥, �̇�, 𝑧) = 𝛼𝑘0𝑥 + (1 − 𝛼)𝑘0𝑧, (9)

where 𝛼 is the plasticity ratio and 𝑘0 the initial stiffness. The eegbw model exhibits a notable performance, as evidenced
by Figure 13. The model nearly seizes each section of the hysteresis curve, see Table 7. Additionally, Figure 14 and Table 4
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F IGURE 14 Comparison between the response of a prestressed plywood-coupled LVL shear wall and the extended energy-dependent
generalized Bouc-Wen model under pseudo-dynamic tests; Exp. stands for experimental data, while Sim. for simulated data

F IGURE 15 Stability of the eegbw model to the integration time step, obtained by varying the amplitude of the time step in the
pseudo-static simulation

validate the eegbw model using the experimental response to pseudo-dynamic excitation and confirm that there is a sub-
stantial agreement between the eegbw model and the experimental response.
Though, differently from algebraic or transcendental models, the restoring force in Bouc-Wen class models originates

from the solution of a first-order differential equation. In current situations, the solution descends from numerical inte-
gration. Several algorithms can ensure proper convergence of the solution; however, the endeavor for convergence may
entail additional computational costs. In some instances, the difficulty in convergence may raise the computational costs
to unreasonable durations of the simulations.
The authors attempted to illustrate the role of convergence in Figure 15 by varying the sampling interval in the eegbw

model. The occurrence of instability manifests as an abrupt growth of the force or displacement values: the forcing term
can push the model to out-of-range values of the hysteresis curve. The authors chose the approximate dissipated energy
as a synthetic parameter to reveal the occurrence of instability. If the approximate dissipated energy blows up, the model
attained out-of-range values of the displacement or force values. Accurately, instability issues are sensitive to the value
of the integration step: higher integration steps lead to larger displacement steps, which can lead the pinched paths to
attain out-of-range values. Therefore, the authors varied the integration step in a given interval to observe the possible
occurrence of nonconvergence. The sampling interval associated with the pseudo-dynamic loading is 0.001 s. It tested the
stability of the integration, without any convergence algorithm, in the range 0.001–0.007 s. Figure 15 reports themaximum
value of the approximate dissipated energy, namedMax. Energy, as a function of the integration step, is named Time step.
Figure 15 proves that the Bouc-Wen model begins manifesting stability issues since a 0.003 s time-step, where the dissi-
pated energy boosts. Conversely, the dissipated energy of the Atanmodel is stable, since the force value is algebraic and so
defined at each time step without the need of any antecedent value. The maximum dissipated energy of the experimental
test is set stationary to the velocity of the integration by disregarding possible viscous effects which may raise its value.
These rudimentary passages do not demonstrate the instability of the eebgw model, since dynamic simulations should
always be driven by suitable convergence algorithms to obtain consistent results. However, the more the model is prone
to instabilities, the more the convergence algorithm must lessen the integration step with possibly inconvenient raise of
the computation time. On the contrary, algebraic and transcendental models may have several advantages. Primarily, they
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F IGURE 16 Seismic response to the El Centro earthquake of a simplified structural archetype defined in terms of the Atan model

do not require the solution of a differential equation. Additionally, if the model is upper bounded, the excitation would
never cause abrupt boosts if the time step is too much loose. At this stage, the authors wonder if using an algebraic or
transcendental model with a bit higher discrepancy with the experiments may bemore beneficial than using a differential
hysteresis model. The differential hysteresis model may sharply seize the experimental response but could be critically
prone to numerical instabilities, which may compromise the advantage in using empirical formulations. Several scholars
favor empirical hysteresis models, that is, models without any mechanical establishing that blindly match the experimen-
tal data, to carry out faster analyses. However, if the hysteresis model is vulnerable to instabilities, the computational
costs could make impractical their use in structural calculations. Therefore, their intrinsic vulnerability may erode their
computational advantages.

6.1 Nonlinear dynamic analysis

The preceding sections exposed the performance of the Atan model under a given displacement history, quasi-static, or
pseudo-dynamic. This subsection bestows a further demonstration of the Atanmodel performance in a full dynamic anal-
ysis. The authors solved the nonlinear ODE of a SDOF oscillator, where the Atan model describes the resisting inelastic
force. In contrast with the previous sections, the displacement is unknown andmust descend from the numerical integra-
tion of the ODE. Precisely, the authors used the explicit fourth-order Runge-Kutta method for the temporal discretization
of the approximate solution of the ODE. It is considered an inelastic SDOF oscillator, representative of an LTF shear wall
in Figure 5, which bears a 1000 kg mass. The ODE representative of the nonlinear dynamic response of an LTF shear wall
under earthquake excitation is:

𝑚�̈� + 𝑓𝑠 = −𝑚�̈�𝑔, (10)

where𝑚 is the mass, 𝑥 the displacement, �̈� the double derivative of 𝑥 with respect to time, 𝑓𝑠 the resisting inelastic force,
and �̈�𝑔 the ground acceleration. In this example, the authors used a recording of the El Centro earthquake. Figure 16
illustrates the displacement–time, velocity–time, force–time, and force–displacement curves. The results are comforting
since the model exhibits a stable performance under earthquake excitation. Besides, the displacement–time plot mani-
fests the occurrence of a residual drift, which represents precious information in the postearthquake assessments. The
hysteresis curve manifests all features of timber connections, pinching, and degradation phenomena. Regrettably, these
results do not have the experimental counterpart to provide a full validation.[41] Although, this section serves as a further
demonstration of the model performance under earthquake excitation.

7 CONCLUSIONS

This paper presents the “Atan” model, a transcendental hysteresis model possibly useful to reproduce the hysteresis
response of wooden structural systems characterized by notable pinching and degradation effects. The primary aspects
addressed by this paper are:
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∙ The so-labeled Atan model originates from the piecewise definition of the arctangent function shaped by constant or
time-varying parameters, depending on the degradation phenomena to follow. Themain features of the hysteresis loop,
like the ultimate force and the initial stiffness, yield a direct definition of the parameters of the arctangent functions.

∙ The authors adopted the proposed model to match the experimental cyclic response of LTF, CLT shear walls, and an
angle bracket, characterized by distinct stiffness and strength decay. The LTF and the angle bracket required the adop-
tion of an exponential function to seize the observed lowering in strength and stiffness. Conversely, the CLT required
a step-like shape function to reproduce the abrupt fall in strength and stiffness due to the sudden failure of the hold-
downs.

∙ The experimental cyclic response to pseudo-static and pseudo-dynamic excitation of a plywood-coupled LVLwall panel
validated the proposed Atanmodel. The authors compared the pseudo-dynamic response of the Atanmodel, calibrated
on the pseudo-static cyclic data, with the experimental cyclic response to the same pseudo-dynamic excitation. The
comparison yields satisfactory results and endorses the usefulness of the proposed model.

∙ In the last section, the authors address the importance of dealing with numerically stable and upper bounded hysteresis
models to have consistent results without a significant rise in computational time. A Bouc-Wen class model is used to
explain these concepts and remark on the advantages of using algebraic or transcendentalmodels, like the one presented
in this paper.

∙ Future research efforts will focus on implementing theAtanmodel as a newuser-defined element inAbaqus to simulate
the nonlinear dynamic response of more complicated structural arrangement. The computational and stability advan-
tages of the Atan model and the Abaqus capability in assembling the stiffness matrix may support the development of
reliable and efficient nonlinear springs for the simulation of nonlinear structural responses.
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